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ABSTRACT

When on/off switches are triggered at discrete time levels by a threshold condition in a traditionally discretized
model, the model solution is not continuously dependent on the initial state and this causes problems in tangent
linearization and adjoint computations. It is shown in this paper that the problems can be avoided by introducing
coarse-grain tangent linearization and adjoint without modifying the traditional discretization, although the coarse-
grain gradient check can be performed only for finite perturbations.

1. Introduction

The classic adjoint formulations were generalized by
Xu (1996a,b; 1997a) for physical processes with param-
eterized discontinuities. According to the recent study
of Xu (1997b), in order to apply the generalized adjoint
formulations to time discrete numerical models, the tra-
ditional time discretization scheme needs to be modified
with the switch time determined by interpolation as a
continuous function of the initial state. Otherwise, the
discrete solution is not continuously dependent on the
initial state and, consequently, the cost function contains
zigzag discontinuities and their gradients contain delta
functions. These delta functions are accurate descrip-
tions of the local jumps of the cost function with respect
to infinitesimal perturbations of the initial state, but they
cannot tell the ‘‘nonlocal’’ variations of the cost function
with respect to finite perturbations of the initial state.
Since practical adjoint applications consider finite per-
turbations, the central problem here concerns how to
estimate the coarse-grain gradient for the nonlocal vari-
ations of the cost function. This problem can be solved,
as proposed in Xu (1997b), by modifying the traditional
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time discretization so that the computed gradient con-
tains no delta function and can be used for nonlocal
variations. This approach is clean but requires additional
work in modifying the existing forward model. If the
forward model is not modified, then an alternate ap-
proach is needed to compute the coarse-grain gradient.
The related problems will be examined in this paper.

The paper is organized as follows. The analytical
benchmark model and two types of discrete forward
models are reviewed in the following section. Detailed
error analyses are performed in section 3 for four types
of tangent linear models derived from the two discrete
forward models. Adjoint models and problems in gra-
dient check are examined in section 4. The results are
summarized with conclusions in section 5.

2. Review of analytical model and two types of
discrete forward models

a. Analytical model and benchmark solutions

As in Xu (1996a, hereafter referred to as X96a) and
Xu (1997b, hereafter referred to as X97b), the analytical
model is described by the following equation:

d x 5 F 1 H(x 2 x )G,t c

x 5 x at t 5 0, (2.1)0
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FIG. 1. Relative difference [RD defined in (2.2)] between analytical
tangent linear solution dx and nonlinear perturbation Dx. Solid and
dashed curves are for the generalized and conventional tangent linear
solutions, respectively. The parameter values are F 5 1, G 5 20.5,
xc 5 0.38, and T 5 1.

FIG. 2. Analytical gradient ]J/]x0 (solid curve) and conventional
adjoint solution (dashed curve). The parameter values are as in Fig. 1.

where G and F are constant, H( ) is the Heaviside unit-
step function (see p. 622 of Courant and Hilbert 1962),
and xc is the threshold value for the parameterized pro-
cess. As shown in X96a, H(x 2 xc) can be replaced by
H(t 2 t) for an on-switch or by H(t 2 t) for an off-
switch, where t denotes the switch time.

The generalized tangent linear equation of (2.1) is
given by dtdx 5 dxH9(t 2 t)G/F [see (3.7) of X96a or
(2.3a) of X97b]. As shown in X96a, the solution of this
generalized tangent linear equation is the first-order ap-
proximation of the nonlinear perturbation Dx 5 x9 2
x, where x9 is perturbed solution obtained from (2.1)
with x0 replaced by x0 1 dx0. The relative difference
(RD) between dx and Dx can be measured by

1/2 21/2T T

2 2RD 5 (dx 2 Dx) dt (Dx) dt . (2.2)E E[ ] [ ]
0 0

Since dx and Dx are functions of dx0, RD is also a
function of dx0. As shown by the solid curve in Fig. 1
(with F 5 1, G 5 20.5, xc 5 0.38, x0 5 0, and T 5
1), RD ø O(dx0), so the generalized tangent linear so-
lution dx is a valid linear approximation of the nonlinear
perturbation Dx.

The conventional tangent linear equation of (2.1) is
given by dtdx 5 0 (see case 1 in section 3a of X96a),
and the solution is given by dx 5 dx0. The relative
difference (RD) between this solution dx 5 dx0 and the
nonlinear perturbation Dx is shown by the dashed curve
in Fig. 1. Unlike the solid curve, this dashed curve is
far above zero even when dx0 becomes zero, so the
conventional tangent linear solution is not a valid linear
approximation of Dx.

The analytical cost function has the following form:

T

2J 5 D dt, (2.3)E
0

where D 5 x 2 xob, x is the solution of (2.1), and xob

is the observed value of x, which is error free and given
by the analytical solution of (2.1) with x0 5 0. Substi-
tuting the solution of (2.1) into (2.3) gives an analytical
expression of the cost function [see (6.7) and Fig. 9 of
X96a]. The gradient of this cost function, ]J/]x0, is
plotted by the solid curve in Fig. 2. This gradient can
be exactly derived by the backward integration of the
generalized adjoint equation [see (3.8) of X96a or sec-
tion 2 of X97b], but not by the backward integration of
the conventional adjoint equation [see (3.3) of X96a].
The conventional adjoint solution is plotted by the
dashed curve in Fig. 2, which is clearly different from
the true gradient (solid curve). These analytical results
will be used as benchmarks for the numerical experi-
ments in the subsequent sections.

b. FM0—Traditional time discretization of the
forward model

As in (3.1) of X97b, the traditional discretization of
(2.1) yields the following forward model (FM0):

x 5 x 1 FDt for n 5 1, 2, · · ·, m,n n21

x 5 x 1 (F 1 G)Dt for n 5 m 1 1,n n21

m 1 2, · · ·, N,

(2.4)

where Dt 5 T/N is the time step. Here, an on-switch is
triggered at the mth level immediately after the threshold
condition is exceeded, and this mth time level is deter-
mined by xm $ xc . xm21.

The discrete cost function has the following form:
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FIG. 3. Costfunction Jd constrained by FM0 (dashed) or by FM1
(solid). Here, N 5 10 (or Dt 5 0.1) is used for the discrete models
FM0 and FM1. The parameter values are as in Fig. 1.

FIG. 4. As in Fig. 1 except for two RDd curves [see (3.2)]: the
dotted with dxn computed by CTLM0 and Dxn obtained from FM0,
and the dashed with dxn computed by CTLM1 and Dxn obtained from
FM1. The thin solid line is the same as the dashed analytical curve
in Fig. 1. Here, N 5 10 is used in (a), and N 5 100 is used in (b).

N

2J 5 D Dt, (2.5)Od n
n50

where Dn 5 xn 2 xobn and xobn is observed value of x
at the nth time level, which, as in (2.3), is error free
and given by the analytical solution of (2.1) with x0 5
0. As explained in X97b, the FM0 solution is not con-
tinuously dependent on the initial state x0 (see Fig. 2 of
X97b), and this causes zigzag discontinuities in Jd (see
the dashed curve in Fig. 3). As these discontinuities
cause delta functions in the gradient (see Fig. 3 of
X97b), the derived gradient ]Jd/]x0 can be very different
from the analytical one ]J/]x0.

c. FM1—Modified time discretization of the forward
model

The above problem can be solved if the traditional
discretization is modified with the switch time deter-
mined by linear interpolation as a continuous function
of the initial state. The modified forward model (FM1)
is given in (5.1) of X97b. Since the FM1 solution is
continuously dependent on the initial state x0, the cost
function Jd now is a continuous function of x0 (see the
solid curve in Fig. 3). As shown in section 5 of X97b,
when Dt → 0, Jd → J and ]Jd/]x0 → ]J/]x0, so ]Jd/]x0

is a good approximation of the analytical gradient ]J/
]x0.

3. Four types of tangent linear models

a. CTLM0—Conventional tangent linearization of
FM0

As the switch time variation is ignored, the conven-
tional tangent linearization of FM0 in (2.4) yields
(CTLM0)

dxn 5 dxn21 for n 5 1, 2, · · · , N. (3.1)

The solution of (3.1) is a trivial one: dxn 5 dx0 and is
very different from the nonlinear perturbation Dxn 5

2 xn, where is the solution obtained from (2.4)x9 x9n n

with the perturbed initial state x0 1 dx0. The relative
difference between dxn and Dxn can be measured by

1/2 21/2N N

2 2RD 5 (dx 2 Dx ) (Dx ) . (3.2)O Od n n n[ ] [ ]n50 n50

As shown by the dotted curve in Fig. 4a (where N
5 10 and Dt 5 0.1), RDd 5 0 when the initial pertur-
bation dx0 is within a small range (determined by FDt
5 0.1) in the vicinity of zero. In this case, the initial
perturbation dx0 is too small to cause the switch time
to jump from one time level to the next time level (see
Fig. 3 of X97b), so Dxn 5 dxn 5 dx0 and RDd 5 0.
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FIG. 5. As in Fig. 4b except the dotted curve is obtained with dxn

computed by GCTLM0 and Dxn obtained from FM0, and the dashed
curve is obtained with dxn computed by GTLM1 and Dxn obtained
from FM1.

When dx0 moves beyond the above small range, the
switch time jumps and Dxn and RDd also jump. As
shown in Fig. 4a, the dotted RDd curve jumps every
time when dx0 is changed by FDt. According to (2.4)
the jump of Dxn is proportional to GDt, and according
to (3.2) the jump of RDd is proportional to GDt/dx0.
When Dt is small, as shown in Fig. 4b, the jumps of
the dotted RDd curve become small and densely packed.
When Dt → 0, the dotted RDd curve approaches (for
dx0 ± 0) to the analytical RD curve far above zero
(shown by thin solid line in Fig. 4b and dashed line in
Fig. 1). Thus, when |dx0| $ O(FDt), the CTLM0 solution
is not a valid approximation of the nonlinear pertur-
bation obtained from FM0. When |dx0| , O(FDt) and
RDd 5 0, the CTLM0 solution is the same as the non-
linear perturbation obtained from FM0, but the latter is
not a valid discrete approximation of the analytical non-
linear perturbation obtained from (2.1).

b. CTLM1—Conventional tangent linearization of
FM1

The conventional tangent linearization of FM1 yields
CTLM1, which has the same form as CTLM0 in (3.1).
The CTLM1 solution is also a trivial one: dxn 5 dx0.
The relative difference RDd between this CTLM1 so-
lution and the nonlinear perturbation Dxn obtained from
FM1 (instead of FM0) is plotted by the dashed curves
in Figs. 4a,b. These dashed RDd curves are very close
to the analytical RD curve for the conventional tangent
linearization (shown by thin solid line in Fig. 4 and
dashed line in Fig. 1). That these curves are far above
zero indicates that CTLM1 is not a valid tangent linear
model of FM1.

c. GTLM1—Generalized tangent linearization of FM1

The generalized tangent linearization of FM1 yields
GTLM1, and the detailed formulation is given in (5.5)
of X97b. The relative difference RDd between the
GTLM1 solution and the nonlinear perturbation Dxn ob-
tained from FM1 is plotted by the dashed curve in Fig.
5. This dashed RDd curve is very close to the analytical
RD curve for the generalized tangent linearization
(shown by thin solid line in Fig. 5 and thick solid line
in Fig. 1). Since RDd ø RD ø O(dx0), the GTLM1
solution is a good linear approximation of the nonlinear
perturbation obtained from FM1.

d. GCTLM0—Generalized coarse-grain tangent
linearization of FM0

The generalized tangent linearization of FM0 can be
derived, but the derived solution contains delta functions
[see (4.2) of X97b] and thus is not a good approximation
of the nonlinear perturbation of the FM0 solution. In
this case, for practical applications, we need to consider
the so-called generalized coarse-grain tangent lineari-

zation of FM0, denoted by GCTLM0, for finite pertur-
bations. This GCTLM0 can be obtained by directly dis-
cretizing the analytical generalized tangent linear equa-
tion of (2.1) [see (3.7) of X96a or (2.3a) of X97b], while
the impact of the delta function in the analytical equation
at the switch point (between time levels m 21 and m)
can be computed by

mDt

H9(t 2 t)dx dt 5 dx(t ) ø dx . (3.3)E 2 m21

(m21)Dt

One can verify that the derived GCTLM0 has the same
form as GTLM1 [see (5.5) of X97b] for the simple
example considered in this paper. In general, GCTLM0
can be different from GTLM1 in the high-order terms.

The relative difference (RDd) between the GCTLM0
solution and the nonlinear perturbation obtained from
FM0 is plotted by the dotted curves in Fig. 5 for Dt 5
0.01. As shown, RDd has large jumps when |dx0| #
O(FDt). These jumps are caused by the noncontinuous
dependence of the nonlinear perturbation on the initial
perturbation dx0. The situation is similar to that in Fig.
4b, except that the jumps in Fig. 4b are rooted on a
different analytical RD curve, which is far above zero
(also see the dashed in Fig. 1). As |dx0| increases beyond
O(FDt), the jumps on the RDd curve diminish rapidly
and the curve becomes very close to the solid analytical
RD curve. This implies that GCTLM0 can be used as
a coarse-grain tangent linear model of FM0 when the
concerned finite perturbation is sufficiently larger than
the change of the FM0 solution caused by one step jump
of the switch time, that is, | 2 x0| k FDt (see Fig. 3x90
of X97b). The adjoint of GCTLM0 can be used to com-
pute the nonlocal gradient for the coarse-grain geometry
of the cost function Jd constrained by FM0. The related
problems are examined in the next section.
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FIG. 6. Plots of F(a) with gradient computed by the adjoint of
CTLM0 and cost function computed by FM0 for three different cases:
x0 5 0.1 with Dt 5 0.001 (solid), x0 5 0.129 998 with Dt 5 0.001
(dashed), and x0 5 0.1 with Dt 5 0.000 01 (dotted).

FIG. 7. Plots of F(a) for three different cases: Dt 5 0.001 (solid)
with gradient computed by the adjoint of GTLM1 and cost function
computed by FM1 at x0 5 0.2, Dt 5 0.001 (dashed), and Dt 5
0.000 01 (dotted), with gradient computed by the adjoint of GCTLM0
and cost function computed by FM0 at x0 5 0.2.

4. Adjoint models and problems in gradient check

The accuracy of a tangent linear model determines
the accuracy of its adjoint. In this sense, the results
presented for the four types of tangent linear models in
the previous section have the following implications for
their associated adjoint models. When the cost function
Jd is constrained by FM1, the gradient ]Jd/]x0 can be
accurately computed by the adjoint of GTLM1, but not
by the adjoint of CTLM1. When the cost function Jd is
constrained by FM0, the local gradient ]Jd/]x0 can be
computed by the adjoint of CTLM0 if the initial state
x0 is not at a discontinuous point of the cost function
Jd(x0). The gradient computed by this adjoint, however,
is local and does not describe the coarse-grain geometry
of the cost function constrained by FM0. On the other
hand, the gradient computed by the adjoint of GCTLM0
is ‘‘nonlocal’’ and describes the coarse-grain geometry
of the cost function constrained by FM0. For the ex-
ample considered in this paper, the adjoint of GCTLM0
is exactly the same as the adjoint of GTLM1, so their
solutions give the same gradient—the gradient of the
cost function constrained by FM1. This cost function
(shown by the solid curve in Fig. 3) now is treated by
the adjoint of GCTLM0 as the coarse-grain geometry
of the cost function constrained by FM0 (shown by the
dashed curve in Fig. 3).

The solution of the adjoint of GCTLM0 captures the
nonlocal impacts of the delta functions in the gradient
of the cost function constrained by FM0, but it does not
match the spikes of the delta functions. Thus, there are
problems concerning how the gradients computed by
the adjoints of CTLM0 and GCTLM0 should be checked
numerically against the direct perturbations of the FM0
solutions. Normally, the accuracy of the gradient com-
puted by adjoint integration can be checked by the fol-
lowing formula:

F(a) 5 [J (x 1 au) 2 J (x )]/[au]J /]x ]d 0 d 0 d 0

5 1 1 O(a), (4.1)

where u 5 (]Jd/]x0)|]Jd/]x0|21 and 0 , a K 1. When
a is small but not as small as the machine round-off
error, one should expect that F(a) 5 1 1 O(a), and
the result should not be very much dependent on x0.
This, however, is not the case for the gradient computed
by the adjoint of CTLM0. As shown in Fig. 6, when
the gradient is computed at x0 5 0.1 by the adjoint of
CTLM0 with Dt 5 0.001, the F(a) curve (solid) is
closely along 1 over the wide range of 10212 , a , 4
3 1023, but drops suddenly as a increases to 4 3 1023.
This problem is caused by the noncontinuous depen-
dence of the FM0 solution on the initial condition x0 1
au. There is no jump in the FM0 solution until a reaches
4 3 1023. Once a increases to 4 3 1023, the switch
time jumps to the next discrete time level, and thus the
solid F(a) curve drops suddenly. When the time step
becomes as small as Dt 5 0.000 01, the F(a) curve
(dotted) drops even as early as a just increases to 5 3
1025. The switch time is affected not only by a and Dt
but also by the initial state x0. When x0 is very close
to a discontinuous point of Jd(x0), a very small a can
cause the switch time to jump. For example, when x0

5 0.129 998 and Dt 5 0.001, the F(a) curve (dashed
line in Fig. 6) drops dramatically even as a just increases
to 1025. Thus, depending on the reference initial state
x0, the gradients computed by the adjoint of CTLM0
can give very different F(a) curves.

The gradient computed by the adjoint of GTLM1 can
be checked by (4.1) to great precision, and the result is
shown by the solid F(a) curve in Fig. 7. This result is
independent of x0. The gradient computed by the adjoint
of GCTLM0, however, cannot be accurately checked by
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(4.1). As shown by the dashed curve in Fig. 7, F(a)
(computed with Dt 5 0.001) is significantly larger than
1 when a , 1022. However, when a is between 1022

and 5 3 1021, this dashed F(a) curve is much closer
to 1 than the three F(a) curves in Fig. 6. Clearly, there
is a finite range of a in which the F(a) curve computed
by the adjoint of GCTLM0 is much closer to 1 than that
computed by the adjoint of CTLM0. This finite range
expands leftward (to 5 3 1025) as Dt decreases (to
0.000 01), as shown by the dotted F(a) curve in Fig.
7. When the initial perturbation dx0 is in this finite range,
the variation of Jd, that is, DJd 5 Jd (x0 1 au) 2 Jd(x0),
can be well estimated by using the adjoint of GCTLM0
but not the adjoint of CTLM0. Thus, the former can be
considered as a coarse-grain adjoint for FM0 and used
to compute the coarse-grain gradient of the zigzag-dis-
continuous cost function constrained by FM0. This
coarse-grain property is tied up with the coarse-grain
property of GCTLM0 illustrated in the previous section.

5. Conclusions

When parameterized on/off switches are triggered at
discrete time levels by a threshold condition in a nu-
merical model, the switch time and thus the model so-
lution are not continuously dependent on the initial state.
This causes problems in tangent linearization of the dis-
crete model and in computations of the cost function
gradient (since the cost function contains small zigzag
discontinuities). As shown in X97b, the problems can
be solved by modifying the traditional time discreti-
zation. As a supplement of X97b, this study shows that
the problems can be avoided by introducing coarse-grain
tangent linearization and adjoint without modifying the
traditional time discretization. The new results obtained
in this paper are summarized as follows:

1) A coarse-grain tangent linear model can be derived
by directly discretizing the analytical form of the
generalized tangent linear equation without modi-
fying the traditional discretization in the forward

model. The coarse-grain tangent linear solution can
be a valid approximation of the nonlinear pertur-
bation obtained from the forward numerical model
as long as the initial perturbation is sufficiently large
to move the switch time through a large number of
time levels (but not too large to cause severe non-
linearity).

2) The adjoint of the coarse-grain tangent linear model
is a coarse-grain adjoint model. Both the coarse-grain
adjoint and the conventional adjoint have problems
with gradient check [see (4.1)], but the problems
occur over different ranges of perturbation amplitude
(see Figs. 6–7). When the time step is sufficiently
small (Dt K | 2 x0|/F, see Fig. 3 of X97b), thex90
coarse-grain adjoint model can be used to compute
the coarse-grain gradient of the zigzag-discontinuous
cost function constrained by the traditionally discre-
tized model.
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